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Abstract.
Background: Age represents the largest risk factor for Alzheimer’s disease (AD) but is typically treated as a covariate. Still,
there are similarities between brain regions affected in AD and those showing accelerated decline in normal aging, suggesting
that the distinction between the two might fall on a spectrum.
Objective: Our goal was to identify regions showing accelerated atrophy across the brain and investigate whether these
overlapped with regions involved in AD or where related to amyloid.
Methods: We used a longitudinal sample of 137 healthy older adults from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI), who underwent magnetic resonance imaging (MRI). In addition, a total of 79 participants also had longitudinal
positron emission tomography (PET) data. We computed linear-mixed effects models for brain regions declining faster than
the average to investigate variability in the rate of change.
Results: 23 regions displayed a 0.5 standard deviation (SD) above average decline over 2 years. Of these, 52% overlapped with
regions showing similar decline in a matched AD sample. Beyond this, the left precuneus, right superior frontal, transverse
temporal, and superior temporal sulcus showed accelerated decline. Lastly, atrophy in the precuneus was associated with
increased amyloid load.
Conclusions: Accelerated decline in normal aging might contribute to the detection of early signs of AD among healthy
individuals.
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INTRODUCTION

Alzheimer’s disease (AD) is the most common
form of dementia, with sporadic AD representing
95% of all cases.1 AD is characterized by worsen-
ing cognition, neurodegeneration, and accumulation
of amyloid-� (A�) plaques and tau neurofibrillary
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tangles. Despite aggressive drug-related research,
there is currently no cure but markers that can help
identify the disease before irreversible damage has
occurred have been widely studied. Most studies
follow the A/T/N classification, with A� and tau
being captured with positron emission tomography
(PET) and neurodegeneration with magnetic reso-
nance imaging (MRI). Both of these techniques have
been shown to be significant and reliable predictors
of AD progression.2−4

Potential risk factors for AD include genet-
ics, socioeconomics, lifestyle, and cardiovascular
health.5−7 Despite these, age still represents the
largest risk factor for sporadic AD.1 After the age of
65, the risk of developing the disease doubles every
5 years, reaching 32% of individuals over the age
of 85.8 In particular, many processes associated with
normal aging, including neurodegeneration but also
neuroinflammation, astrocytic dysfunction, and neu-
rovascular changes, are also involved in AD.9,10 Of
note, research has shown that most brain areas dis-
playing atrophy in AD are also affected in normal
aging although to a less extent.11 However, in most
current work, age is typically taken in as a covari-
ate and rarely treated as the variable of interest.12

Although normal aging and AD show differential
functional and structural deficits, it is unlikely that
they are in binary opposition. Instead, the distinc-
tion between normal and pathological aging falls on
a spectrum, and somewhere along this continuum the
two may be difficult to tease apart.

An unanswered question is whether signs of accel-
erated aging are possible early markers for AD.
Evidence from more than 1,100 individuals indicates
that, although accelerated atrophy is atypical in nor-
mal aging, there are several brain regions, including
the hippocampus, showing this pattern already in
middle age.13 This is not to say that AD exclusively
reflects accelerated aging, but brain regions that show
earlier signs of degeneration or more rapid decline
in healthy older adults may also be more suscep-
tible to AD. For example, accelerated gray-matter
decline can be a sign of increased oxidative DNA
damage, which is linked to inflammation and higher
susceptibility to neurodegenerative diseases.14 Sim-
ilarly, age-related mitochondria dysfunction due to
an accumulation of mutations and oxidative stress
is detrimental for brain health in normal aging and
AD. Finally, other well-known factors associated
with aging such as telomere attrition and genomic
instability also make the brain more vulnerable to
pathology.14,15

Table 1
Participants’ characteristics

N (Female) 137 (73)
Returning at 1st follow-up 137 (73)
Returning at 2nd follow-up 74∗ (43)
Age at baseline (Mean ± SD) 74.25 ± 6.12
Age range 56–90
Education (Mean ± SD) 16.64 ± 2.60
Mini Mental State Examination
Baseline (Mean ± SD) 29.15 ± 1.05
1st follow-up (Mean ± SD) 28.94 ± 1.33
2nd follow-up (Mean ± SD) 29.12 ± 1.13
∗Age differences between baseline and follow-up significant at
p < 0.05.

In the present study, we used a longitudinal sample
of 137 healthy older adults obtained from ADNI to
investigate possible links between accelerated brain
atrophy in healthy aging and AD. Specifically, we
hypothesized that (i) brain regions showing acceler-
ated atrophy in normal aging over a 2 year period
overlapped with those known to be involved in AD
based on previous work and (ii) accelerated decline
in these regions was also linked to A� burden, which
starts accumulating in the brain decades before dis-
ease onset.

MATERIALS AND METHODS

Sample characteristics

Data used in the preparation of this arti-
cle were obtained from the ADNI database
(http://adni.loni.usc.edu). ADNI was launched in
2003 and led by Michael W. Weiner. The main
goal was to develop and validate biomarkers for
early detection and treatment of AD (for details see
http://adni.loni.usc.edu). We included a sample of
137 cognitively normal (CN) participants, who had
longitudinal volumetric data over a 2-year period.
For additional details on subjects’ characteristics see
Table 1.

Specifics on the overall inclusion and exclusion
criteria can be found elsewhere.16 Informed consent
was obtained from all participants or their authorized
representatives. In our study, we included partici-
pants who had preprocessed longitudinal volumetric
data. From the initial ADNI sample (N = 2,261), we
excluded those without complete structural MRI sta-
tus (i.e., failed or only partial preprocessing), leaving
a sample of 938 at baseline. Of these, 130 had AD
according to the National Institute of Neurological
and Communicative Disorders and Stroke and the
Alzheimer’s Disease and Related Disorders Associ-
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Fig. 1. Flowchart of participants included in the study.

ation (NINCDS/ADRDA) criteria and 808 were CN
or had mild cognitive impairment (MCI). We only
analyzed subjects who had viable baseline and fol-
low up data, thus excluding 693 participants. From
the remaining 245 subjects, we removed subjects
with MCI (N = 53) leaving 137 CN individuals who
remained healthy throughout the study interval. In
order to compare the degree of overlap between CN
and AD, we also included 55 AD cases who were
already diagnosed at baseline. From our CN sam-
ple, 17 developed MCI and 2 developed AD within
6 years past the study timeframe. For an overview of
the sample included, see Fig. 1.

Structural MRI

Structural images were acquired from all par-
ticipants using a standardized 3T protocol in
a GE, Siemens, or Phillips scanner with a 32-
channel coil. Cortical reconstruction and volumetric
segmentation were performed with FreeSurfer
(version 5.1) by the UCSF Medical Center
team and are available on the ADNI website.17

For further details regarding MRI acquisition,
preprocessing pipeline, and quality control proce-

dures, please see the UCSF FreeSurfer Methods
(https://adni.bitbucket.io/reference/docs/UCSFFSX
51/UCSF%20FreeSurfer%20Methods%20and%20
QC OFFICIAL.pdf). Gray matter volumes of 86
cortical and subcortical regions from the FreeSurfer
parcellation were used for subsequent analyses.

Aβ PET

A� PET imaging analysis was performed at the
University of California, Berkeley using 18F-AV-45
(florbetapir). Details on PET acquisition protocols are
also freely accessible on the ADNI website (http://
adni.loni.usc.edu/methods/pet-acquisition/). The im-
ages were preprocessed and normalized by the whole
cerebellum using standard Freesurfer-based process-
ing methods (http://adni.loni.usc.edu/methods/pet-
analysis-method/).18,19

Statistical analyses

Annual percent change in gray-matter volume
was computed for each region using one or two
year(s) according to data availability by calcu-

lating PCx−y =
(

(End volume−Initial volume)
Initial volume

)
× 100.

https://adni.bitbucket.io/reference/docs/UCSFFSX51/UCSF%20FreeSurfer%20Methods%20and%20QC_OFFICIAL.pdf
https://adni.bitbucket.io/reference/docs/UCSFFSX51/UCSF%20FreeSurfer%20Methods%20and%20QC_OFFICIAL.pdf
https://adni.bitbucket.io/reference/docs/UCSFFSX51/UCSF%20FreeSurfer%20Methods%20and%20QC_OFFICIAL.pdf
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Table 2
Annual percent change in regions showing decline above 0.5 SD

in CN individuals

Brain region CN
Left Right

Accumbens area –1.774 –1.385
Amygdala –2.063∗
Caudal anterior cingulate –1.295
Fusiform –1.144∗
Hippocampus –1.435∗ –1.298∗
Inferior parietal –1.297∗ –1.368∗
Inferior temporal –1.058∗ –1.219∗
Lingual –1.191
Middle temporal –1.188∗
Pallidum –1.236
Parahippocampal –1.414∗
Precentral –1.199
Precuneus –1.132∧† –1.238
Superior frontal –1.059∧
Superior parietal –1.413 –1.518∗
Superior temporal sulcus –1.415∗∧
Transverse temporal –1.043∧

Above 0.5 SD of whole brain average in controls = –1.043%.
∗Overlapped with AD (>0.5 SD). ∧Showed accelerated brain vol-
ume decline. †Linked to amyloid accumulation.

Brain regions were then ranked from those showing
the highest annual brain decline to those showing the
lowest. In addition to measuring volumetric decline
in CN individuals, we carried out the same calcu-
lations in a group of AD participants so that we
could compare the percentage of brain regions with
faster than average decline that overlapped between
the two samples. For CN individuals, there was a
tight range in annual change for different regions
(between –0.020628 and 0.013484%) and, as such,
we focused on those whose decline was greater than
0.5 standard deviation (SD) from the whole brain
average.

Annual percent change in CN individuals indi-
cated which parts of the brain showed consistently
faster than average decline. However, our main aim
was to examine whether this decline accelerated over
time. To investigate this question, we analyzed the
23 regions showing > 0.5 SD using linear mixed-
effects (LME) models in R (version 1.3.1056). This
method allows us to account for a different number of
observations across subjects. A separate model was
computed for each of the brain regions in order to
characterize individual trajectories of change in CN
participants. Mean-centered baseline age was used as
the fixed effect, while time, sex, and intracranial vol-
ume (ICV) were added as covariates. We included
an interaction term (age x time) which could capture
differences in longitudinal change between individu-

als of different ages. Random effects were used to
extract the corresponding slopes and intercepts of
each model, allowing for participant-to-participant
variability. The intercepts were taken to reflect the
baseline relationship between the variable of inter-
est (i.e., volume) and age, whereas slopes were used
to indicate change in the same variable over time.
Our main outcome of interest were regions showing
negative age by time interactions. To further explore
the trajectory of age-related changes, we applied
generalized additive mixed models (GAMM) using
the gamm4 package in R.20,21 This fits the associ-
ation between volume and age semi-parametrically
and allowed us to illustrate each participant’s
trajectory.

After this, we focused on whether there were
associations between change in accelerated volume
decline (e.g., negative age by time interactions) and
increased A� accumulation. A total of 79 partici-
pants had longitudinal PET data. We computed LME
models for these subjects in brain regions showing
negative interactions for volume. We extracted inter-
cept and slope for volume and A� models and ran
pairwise association tests.

RESULTS

Annual brain volume decline in CN individuals

We first investigated the degree of overlap between
regions showing faster than average decline in CN
individuals and AD patients. Ranking the brain
regions based on decline alone, two brain regions
showed the strongest atrophy in both groups; the left
amygdala (1st in CN and 2nd in AD) and left hip-
pocampus (4th in CN and 3rd in AD). Our findings
further indicated that, in CN individuals, 23 regions
showed a decline 0.5 SD (–1.0429%) above the whole
brain average. The same strategy was followed for
AD cases, which resulted in 27 regions declining 0.5
SD above the whole brain average (Supplementary
Material). Of those brain regions, 12 were common
between CN and AD participants, corresponding to
a 52% overlap. For details on annual percent change
estimates in the CN group, see Table 2.

Accelerated brain volume decline in CN
individuals

We further examined whether the 23 regions
identified above not only showed consistently fast
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Fig. 2. Individual trajectories for decline in gray matter in the (A) left precuneus, (B) right superior frontal gyrus, (C) right transverse
temporal gyrus, and (D) right superior temporal sulcus. The bold line indicates mean change.

decline, but also whether this decline accelerated
over time, as indicated by significant age by time
interactions with negative coefficients in our LME
models. The majority of brain regions displayed
steady degeneration over the 2-year follow-up period
(Supplementary Table 1), suggesting that the level
of atrophy was identical throughout the investigated
time period. However, there were four regions for
which decline became significantly steeper over time
(Fig. 2).

These regions were the left precuneus (� = –8.750,
p = 0.028), right superior frontal gyrus (� = –16.353,
p = 0.0184), right transverse temporal gyrus
(� = –0.201, p = 0.001), and right temporal sulcus
(� = –2.656, p = 0.0469). For additional details, see
Table 3. In these regions, decline became steeper

over time and it was also more pronounced in older
individuals.

Links to Aβ accumulation

Finally, we set out to investigate if, among the
regions showing age by time interactions, there were
significant increases in A� load. From the sample of
CN individuals, 79 had longitudinal PET A� data.
First, we computed LME models for the four regions
of interest (see Table 4). We found a change–change
association between decrease in volume and increase
in A� for the precuneus (r = –0.207, p = 0.04; Fig. 3).
Furthermore, A� increase was associated with base-
line volume (r = 0.243, p = 0.019) for this region. No
other regions showed significant associations.
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Table 3
Volume LME estimates for each of the brain regions showing accelerated brain volume decline

Brain region Predictor Coefficient SE t p

Left precuneus Age –20.212 14.1005 –1.433 0.154
Time 578.820 294.560 1.965 0.051
Age x time –8.750 3.967 –2.205 0.029∗
ICV 0.003 0.001 6.504 <0.001∗∗
Sex 206.828 161.5356 1.280 0.203

Right superior frontal Age –78.788 25.569 –3.081 0.003∗
Time 1037.040 507.722 2.043 0.042∗
Age x time –16.253 6.840 –2.376337 0.018∗
ICV 0.006 0.001 6.143 <0.001∗∗
Sex 719.649 313.182 2.298 0.023∗

Right transverse temporal Age –2.346 2.190 –1.071 0.286
Time 140.394 44.731 3.139 0.002∗
Age x time –2.009 0.603 –3.334 0.001∗
ICV 0.000 0.000 2.614 0.010∗
Sex 51.114 26.656 1.918 0.057

Right superior temporal sulcus Age –2.475 5.002 –0.495 0.622
Time 173.089 98.667 1.754 0.081
Age x time –2.656 1.329 –1.999 0.047∗
ICV 0.001 0.000 3.550 0.001∗∗
Sex 62.520 62.355 1.003 0.318

∗p < 0.05; ∗∗p < 0.001.

Table 4
Amyloid LME estimates for each of the brain regions showing accelerated brain volume decline

Brain region Predictor Coefficient SE T p

Left precuneus Age x time 0.009 0.003 2.507 0.014∗
Age 0.006 0.005 1.121 0.266
Time –0.602 0.255 –2.358 0.021∗
Sex –0.026 0.066 –0.392 0.696
ICV 0.000 0.000 1.047 0.298

Right superior frontal gyrus Age x time 0.007 0.004 1.805 0.075
Age 0.003 0.004 0.647 0.520
Time –0.491 0.286 –1.718 0.090
Sex –0.054 0.046 –1.174 0.244
ICV 0.000 0.000 1.049 0.297

Right transverse temporal gyrus Age x time 0.003 0.002 1.469 0.146
Age 0.009 0.004 2.050 0.044∗
Time –0.206 0.148 –1.388 0.169
Sex –0.058 0.057 –1.030 0.306
ICV 0.000 0.000 1.158 0.251

Right temporal sulcus Age x time 0.007 0.004 1.551 0.125
Age 0.005 0.005 1.144 0.256
Time –0.456 0.319 –1.427 0.158
Sex –0.079 0.055 –1.437 0.155
ICV 0.000 0.000 0.894 0.374

∗p < 0.05.

DISCUSSION

In this study, we identified brain regions display-
ing accelerated decline in gray matter volume over a
period of 2 years in healthy older adults. Our goal was
to examine if these regions overlap with those known
to be traditionally associated with AD and investi-
gate if this decline was further linked to increased
A� burden over the same time period. Several fac-

tors impact the aging brain, including cardiovascular
health, myelin loss, astrocytic disfunction, alterations
in neurotransmission, neuroinflammation, and gene
expression. These changes are part of normal aging
but can also lead to increased vulnerability to AD
dementia.11 In fact, brain aging that deviates from
one’s expected chronological age has been previously
linked to AD and cognitive decline.22,23 In a study by
Glorioso et al. (2019),24 older brain age was associ-
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Fig. 3. Scatterplot showing a chang–change association between
volume and A� in the left precuneus.

ated with an increase in AD cases, whereas younger
age was protective even in the presence of APOE
�4. Our findings indicate that the left precuneus,
right superior frontal gyrus, right transverse tempo-
ral gyrus, and right superior temporal sulcus display
significant accelerated decline in healthy aging and
might be associated with early signs of AD. These
regions are among those known to be hallmarks of the
disease, with our study further showing an associa-
tion between accelerated decline in the left precuneus
and increasing A� accumulation. Given that previ-
ous work has found large early A� accumulation in
the precuneus, this supports our hypothesis linking
gray-matter decline to AD pathology.

The hippocampus and amygdala were among
regions showing the strongest overlap between CN
and AD patients. These, together with other limbic
regions, are well-known early predictors of AD.25,26

This overlap is promising and suggests that fast (>0.5
SD) volume decline can serve as a benchmark of
age-related pathological processes even in healthy
individuals. Still, our findings show that a total of
23 regions decline quickly in older adults, but not
that this decline accelerates over time. Given that we
were interested in identifying interactions between
aging and AD, we analyzed these regions using LME
models to capture non-linear trajectories of decline.

Four regions were identified as displaying acceler-
ated decline measured using age by time interactions
in the LME models. These regions have well-
established relevance in the field of AD. Firstly,
regional dysfunction in the precuneus is an indi-
cator of future AD pathology, as it displays
early accumulation of A� and neurofibrillary tan-

gles, but also disproportioned atrophy at relatively
younger ages.27,28 In our study, we also found
a change–change association between volumetric
decline in the precuneus and A� accumulation, sug-
gesting an interaction between accelerated brain
aging and AD. In addition, this region is considered
one of the main hubs of the default mode network
(DMN), which has been widely linked to AD diag-
nosis and progression29 and is a prominent location
for neuroinflammation.30 In fact, disconnection of the
precuneus precedes and contributes to regional brain
atrophy in early AD stages.31 Similarly, the superior
frontal gyrus is part of the DMN, where the first signs
of A� buildup occur.27,32 Since it is involved in a myr-
iad of cognitive domains, this region is one of those
showing highest age-related decline which predicts
risk of cognitive impairment as well as dementia.33

Early annual A� accumulation has been seen in
the transverse temporal gyrus.27 In a study investi-
gating cortical spreading of tau and A� in AD, the
authors found that A� was most frequently observed
in the frontotemporal cortices, including the supe-
rior frontal gyrus, spreading through the neocortex
afterwards.32 This region is also the auditory cen-
ter of the brain and has been linked to memory
registration,34 with AD patients showing reduced
activity during short-term memory recognition.35

Still, the most established theory relating the trans-
verse temporal gyrus to AD is that hearing deprivation
leads to social isolation which, therefore, can increase
the risk of dementia.36 Compared to healthy older
adults, individuals at risk for AD also exhibit reduced
glucose metabolism in the right transverse tempo-
ral gyrus as well as in the precuneus, among other
areas.37 This could indicate that this region functions
as a possible indicator of future AD.

Lastly, the superior temporal sulcus displays high
AD-pathology burden early on the disease stage,38,39

with evidence further indicating that healthy individ-
uals with high A� are at increased risk of cognitive
decline.38 This region appears to be especially suc-
cessful as an MRI marker of AD,3,28 but recent
work also shows that regional A� PET in the supe-
rior temporal sulcus may be more sensisitve than
global SUVR for detecting early A� deposition.38

Importantly, this region is vulnerable to neurotoxicity
and exhibits very early glucose hypometabolism.40,41

Given that signs of oxidative stress and altered glu-
cose metabolism are also part of the normal aging
process, our findings suggest that there may be a
direct link between accelerated gray-matter decline
in healthy older adults and pathological processes
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in AD.42 Both the precuneus and superior tem-
poral regions, and to a lesser extent the superior
frontal gyrus, are known brain network hubs cen-
tral to cognitive functions, neural integration, and
communication.43 Their highly demanding func-
tional role is linked to increased metabolic demands
and, consequently, might result in faster aging or
higher vulnerability to early signs of brain aging.
There is also work showing interactions between time
and A� as well as tau in the superior temporal sulcus
and precuneus.41 This research indicates that the link
between tau and volumetric measures might be dis-
tinct from that of A�. Such results could explain why
only atrophy in the precuneus was associated with
increased A� burden. They also indicate that greater
atrophy could predict future A� or tau PET. This
can occur as a consequence of MRI atrophy catego-
rized by neuronal dysfunction and reduced dendritic
branching being present before tau tangles mature.41

In summary, our results suggest that, across the
brain, four regions are most impacted by age-related
processes which makes them more susceptible to
neuropathology. However, only the precuneus dis-
played a change–change association with A�. One
explanation for this is sample heterogeneity. AD is
a multifactorial condition, with only 55% of cases
displaying signs of typical AD.44 Trajectories for
different AD subtypes may become more noticeable
closer to diagnosis. Secondly, it could be that some
regions are more sensitive to signs of regional tau
accumulation but these data were not available. Given
the sample size, we cannot make claims regarding
laterality of these four regions. Although evidence is
mixed, there is work suggesting that increased AD
burden in the right hemisphere may increase the risk
of dementia.45 In our study, there were not consid-
erable differences in the degree of decline between
hemispheres. Most of the brain regions reported
showed lower decline in the left hemispheric but the
difference was smaller than 0.03%. This might be
indicative that the same process is expected in both
hemispheres but slightly delayed in the left side of
the brain. Overall, postponing disease onset by even
a year through behavioral or drug-related approaches
has benefits for individuals and can reduce economi-
cal costs. Our study suggests that identifying regions
with accelerated decline in healthy older adults pro-
vides important insights regarding early predictors of
AD. By focusing on commonalities between AD and
normal aging, instead of ignoring them, we were able
to pinpoint four regions that can potentially be used
to detect at-risk healthy individuals.
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